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Abstract. A new lattice spin model for many self-avoiding polymers is introduced in which 
the chain length distribution is fully controllable with a single generating (‘magnetic’) field. 
The model utilises spins with additional internal symmetry degrees of freedom to impose 
a causal connectivity of the polymer bonds on the lattice. Use of the method of random 
fields then produces an equivalent n + 0 limit field theory. The Flory-Huggins theory for 
a polymer solution emerges simply from this field theory in the mean field approximation. 
Polymer-polymer interactions between polymer segments on nearest-neighbour lattice are 
introduced into the field theory, and the low polymer volume fraction limit of the theory 
reduces to the Edwards type field theory for dilute through semidilute polym-er solutions. 
A sketch is provided towards the treatment of branched polymers with fully controllable 
chain and branch length distributions and branching probabilities as well as a kinetic 
polymerisation system governed by specified propagation and termination probabilities. 

1. Introduction 

Despite the enormous advances in the development of renormalisation group methods 
for the calculation of measurable long wavelength polymer properties in dilute (Oono 
et al 1981, Oono and Freed 1982, Kholodenko and Freed 1983a, b, 1984a, Douglas 
and Freed 1983, 1984, Miyake and Freed 1984, Oono and Kohmoto 1983, Nemirovsky 
and Freed 1985) and in semidilute (Ohta and Oono 1982, Freed 1983, Nakanishi and 
Ohta 1983) solutions, there are a number of fundamental problems which remain 
totally unresolved. One of these involves the treatment of interacting polymers in 
concentrated solutions and blends. Here the chain conformation space renormalisation 
group methods and other direct renormalisation group approaches (des Cloizeaux 
198 l ) ,  which are so useful in dilute and semidilute solutions, become inapplicable 
because they are based upon the Edwards (1966) pseudopotential model of delta 
function polymer interactions. This model does not account for the non-zero volume 
occupied by the monomer units of the polymer, so there is no upper bound on the 
allowable polymer density as it exists for real polymers with short-range repulsive 
interactions between all monomers. Hence, the pseudopotential model is useful for 
polymer volume fractions much less than unity. 

One possible route towards extending the chain space methods to higher concentra- 
tions is to appeal to universality considerations with the recognition that an upper 
density adds another parameter to the system, and perhaps this could be accomplished 
by introduction of the additional three-body repulsive interactions. These interactions 
are marginal in three dimensions, but they have been used in collapsed polymers 
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872 K F Freed 

(Kholodenko and Freed 1984b) to introduce effectively constraints on the maximum 
polymer density. Whether such a model (or one with still more parameters or higher 
body interactions (Ptitsyn er a1 1968)) is adequate for concentrated solutions, melts 
and blends remains to be tested by comparison with experiment. The chain conforma- 
tional space calculations become rather tedious in this case, so it would be extremely 
useful to have other theoretical support for such a two- and three-body interaction 
model (or one with more parameters) before embarking on these lengthy calculations. 

An alternative approach to concentrated polymer systems lies in the use of lattice 
models where the polymer monomers occupy one or more lattice sites, providing a 
natural upper bound to the polymer density. Lattice models have been used in 
conjunction with Monte Carlo methods to simulate polymer properties. The most 
widely employed model involves self-avoiding polymers which have an attractive 
interaction between non-bonded monomers (of the same or different polymers) on 
neighbouring lattice sites (Kremer et a1 198 1 ) .  Variation of the attractive interaction 
in the lattice model is equivalent to varying the strength of the excluded volume 
interaction and, hence, to changing the temperature in real polymer systems. 

Analytical lattice models of polymers have been developed to treat only the 
self-avoiding walks on a lattice (de  Gennes 1979). This is accomplished by introducing 
n-component spins SI at each site j in the lattices such that = n, and  in the n + 0 
limit the characteristic function for the spins is exactly 

(1.1) 

where the Trs implies averaging over the spin variables. Equation ( 1 . 1 )  dejnes the 
probability distribution for the SI, so the n + 0 limit approach is actually unnecessary 
at this juncture. 

This spin model, however, suffers from a number of serious deficiencies as follows: 
firstly, there is an uncontrollable chain length distribution inherent to the method 
unless the model is extended to have different spin variables for each polymer chain 
with a different ‘magnetic field’ to generate these individual chains. This drawback 
poses no real impediment to the evaluation of power law ‘critical’ exponents, but it is 
unsuitable for the calculation of molecular weight dependent properties which emerge 
in a non-power law fashion such as those associated, say, with a dilute solution of 
polymer type A in a melt of polymer B. This physical example also exposes a second 
deficiency with the existing n + 0 limit n-component model, namely, its inability of 
including polymer-polymer and  polymer-solvent interactions as are present in the 
mean field Flory-Huggins theory (Flory 1953) and  in the lattice models used in Monte 
Carlo calculations. 

To our knowledge, the lattice spin models of polymers, based on ( l . l ) ,  have not 
yet successfully been utilised to derive even the simple mean field Flory-Huggins 
theory. This difficulty with present models probably stems from the uncontrollable 
chain length distributions with the lattice spin models, a distribution that sharply 
contrasts to the monodisperse one in the Flory-Huggins theory. The search for 
improved lattice polymer models, which reduce to Flory-Huggins theory in the mean 
field limit, is of interest to remedy the deficiencies, noted by Flory (1953), of this mean 
field theory as follows. Firstly, there is the problem of the possible difference in size 
of monomers and  solvent molecules such that one species may occupy several lattice 
sites. It should be possible to extend our spin models to ones where monomers occupy 
several sites, however, this interesting question is not addressed further here. Flory 
also notes the problem of introducing preferential interactions between like or unlike 

Trs[exp(ik * S,)]  = 1 - i k 2 ,  
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polymers, and  the difficulties he cites for dilute solutions appear to apply as well for 
blends in which one of the components is quite dilute. 

Our goal here is to develop analytically tractable lattice models of polymers having 
controllable chain length distributions and  interaction energies. This is accomplished 
by the introduction in 8 2 of a new 2n-component n + 0 limit spin model where the 
spins have an  internal symmetry label reflecting chain connectivity through the poly- 
merisation index of a given segment. This model has the virtue that an arbitrary chain 
length distribution can be generated with a single two-component ‘magnetic field’. The 
spin integrations are performed by introduction of the method of random fields in § 2. 
A mean field treatment is shown in § 3 to reduce identically to the Flory-Huggins 
result apart from the elimination of immediate self-reversals present in the latter theory. 
A truncated version of the full field theory is transformed in Q3.2  into a latticised 
version of the Edwards (1966, 1975) field theory (Freed 1972) whose continuous limit 
forms the basis for the chain conformational space renormalisation group treatment 
of semidilute solutions (Ohta and Oono 1982, Freed 1983, Nakanishi and Ohta 1983). 
These methods and other direct renormalisation schemes (Schafer and  Witten 1980) 
can deal with polydispersity but not high concentrations. 

Polymer-polymer interactions are introduced in § 4 using the model of nearest- 
neighbour attractions between non-bonded segments, and  the relationship is established 
between this popular lattice model and the corresponding continuum one with two- 
and three-body interactions by truncation of the lattice model field theory. We show 
how to generalise our spin model to exactly describe interacting, self-avoiding branched 
polymer systems (Lubensky and Isaacson 1979) as well as ones describing equilibrium 
polymerisation (Wheeler and Pfeuty 1981) with specific probabilities for chain propaga- 
tion, branching and termination. Lastly, we indicate how to set up  the appropriate 
theory for interactions in a blend or a solution containing two chemically different 
polymers. 

Our goal in this paper is the development of an exact field theory for interacting, 
self-avoiding polymers of specified polydispersity in concentrated solutions and the 
melt. We establish the connection between this theory and other lattice and continuum 
models commonly employed for these systems. It is expected that this new model will 
enable further systemmatic generalisations beyond the so-called improved mean field 
theories of Solc (1975) and  Solc er a1 (1984). 

2. The self-avoiding walk spin model and its field theory representation 

It is possible to fix the length distribution of a single self-avoiding lattice walk by 
appending the usual n + 0 limit n-component spins with an internal symmetry index 
cy = 0, 1 ,  . . . , N where N + 1 is the polymerisation index for the chain. This symmetry 
index cy serves to establish the connectivity of the polymer chain. These generalised 
spins must satisfy the exclusion condition 

prohibiting the cyth monomer from occupying site i on some d-dimensional lattice if 
the P th  monomer is at i. The condition (2.1) and extensions in (2.6) below serve to 
define the probability distribution for the spins &. Their representation as n -+ 0 limit 
vectors is then reduced unnecessary until random fields are introduced in S 2.2. 
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Such a generalisation (2.1) is, however, insufficient for a system of many polymers 
as can be seen by the following two-chain example. Let the first chain begin at site 
b,  and have the first a + 1 monomers given by the sequence of spin variables (whose 
particular spatial indices are irrelevant here): 

s # 0 s J 1 , ~ - 1 s ~ ( , ~ - 2  2 ' * ":\o' ( 2 . 2 ~ )  

Each of the spins except the a t h  occurs squared such that a probability distribution 
like (1.1) yields non-zero values and the polymer has its zeroth monomer at site b, . . . , 
its (a -2)th at site k,, etc. Let the second chain begin at site b2 but have its (a + 1)th 
monomer also at  site i with the spin variables 

stas;*,, - SL,, - 2  . . . s;$l. (2.2b) 

None of the intermediate sites j , ,  k, , .  . . , bl ,J2, .  . . , b,, have pairs in common or are 
the same as site i ;  otherwise the self-avoiding constraint is violated, so the spin average 
yields zero by (2.1). Hence, the combined string of spin variables in ( 2 . 2 ~ )  and (2.26) 
generates through the averaging of (2.1) an unwanted connected chain with 2(a  + 1 )  
monomers. There are likewise strings of spin variables emanating from the other ends 
of the two polymers in the form 

(2.3a) 

(2.3b) 

leading to a self-avoiding chain with 2( N - a) monomers. Hence, in this illustrative 
two-chain problem we have the unwanted contributions (2.2) and (2.3) in addition to 
the desired ones involving a pair of self-avoiding walks each with ( N  + 1)-segments. 

2.1. The spin model 

The above difficulty is removed by further generalisation to 2n-component spins in 
order to have connected walks in the internal symmetry index a. Let S:, and Si, be 
complex 2n-component spins with the real and imaginary parts Ria and Ii,, respectively, 
defined by 

( 2 . 4 ~ )  

(2.4b) 

and each being independent spin vectors satisfying 

1RJJ2 = 14,12 = n. (2.5) 
In the n + 0 limit the joint characteristic function for such a 2n-component spin system 
is a straightforward generalisation of the n-component case without symmetry index 
(de Gennes 1979). The expression 

Tr,[exp(ik - S,h + ikt Smp)]  = 1 - k kt60,p6,,m (2.6) 

defines the only non-zero spin averages. The n --* 0 limit representation is unnecessary 
given the definition (2.6), but in transforming to random fields in 0 2.2, this n + 0 limit 
approach becomes useful. Equation (2.6) also introduces the condition that spins on 
different spatial sites are independent random variables as in the original n-component 
spin model. 
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Given the above spin variables, the string of spin variables replacing (2 .2)  for the 
two-chain problem becomes, as proven below, 

Since we have 

( 2 . 7 ~ )  

( 2 . 7 b )  

the strings involving the product of ( 2 . 7 ~ )  with ( 2 . 7 6 )  are not permitted. Only those 
strings survive the spin averaging of (2 .6)  in which there are self-avoiding chains of 
exactly N bonds, so the two chains retain their integrity without the need for diflerent 
spin variables for each chain individually. The same situation is readily shown to follow 
for the many-chain case from ( 2 . 9 )  below. 

Using these 2n-component n + 0 limit chains, the grand partition function for 
polymers with a probability distribution PN for the polymerisation index N for the 
chains is given by 

where the symbol ( i j )  means i and j are nearest-neighbour sites. The properties of the 
probability distribution defined by (2 .6)  imply that ( 2 . 9 )  may be re-expressed in the 
expanded form of 

m n n ( 1  +=:,+I * Sj,a) fl ( 1  +Ha Sk,O+Ht * s m , N p N ) ) .  ( 2 . 9 ~ )  
( I J )  U = I  m 

Note that in order to introduce the chain length distribution, equation ( 2 . 9 ~ )  has the 
product on a run to infinity. Hence, ( 2 . 9 ~ )  generates strings with all possible numbers 
of polymers of varying lengths. The term in S t a + l  S,, introduces a connected bond 
between nearest-neighbour sites i and j with weight K while that in H begins the 
chain with a monomer at site m, and H t  ends the Nth one at some other site m. Since 
the factor of Ht in ( 2 . 6 ~ )  finishes the chain, a contribution to ( 2 . 9 ~ )  with n,  polymers 
of length NI, n, with N,, etc, is multiplied by the factor (PN,)"l(PN2)"2 to provide the 
proper chain length probability distribution. The analogue of the parameter K in the 
previous spin model is used to specify the average number of monomer units whose 
ratio with the average number of chains yields the average chain length. Our model 
completely controls the chain length distribution, making the parameter K unnecessary, 
so it may be set equal to unity. There are further generalisations, such as to the 
equilibrium polymerisation problem, where it is useful to retain K as it provides the 
model with desired flexibility. Thus, K is maintained in the subsequent discussion 
with the recognition that for ( 2 . 9 )  K is just unity. 

The condition ( 2 . 6 )  precludes differently labelled monomers (in a) from occupying 
the same lattice sites. Note that the use of these spin variables removes the annoyance 
of single-site walks which are present in the standard spin model ( G u j ~ t i  1981). The 
partition function (2 .9)  naturally leads upon expansion to the quoted strings of spin 
variables as in either ( 2 . 7 ~ )  or ( 2 . 7 b ) .  The np polymer partition function is simply 
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obtained from (2.9) as 

(2.10) 

The sum over i in (2.9) or the product over m in (2.9~1) implies that (2.10) contains 
a sum over all possible sites for the chain beginnings and ends, corresponding to their 
equal a priori probability of being anywhere in the d-space lattice. 

Equation (2.9) also describes the partition function for a kinetic equilibrium 
polymerisation problem where K is the probability for addition of a segment to an 
already existing chain, and PN is the chain termination probability. The chain fugacity 
is H .  H'. This kinetic polymerisation model is subject only to the self-avoiding chain 
constraints ; no inclusion of diffusion of monomers or their initial spatial distribution 
is incorporated. Nevertheless, it should prove useful for further study because it 
generalises previous approaches (Wheeler and Pfeuty 198 1 )  to introduce a controllable 
chain length distribution. Note also that the propagation term K can be made a 
dependent and K ,  be taken underneath the sum over a. 

2.2. Introduction of random fields 

For simplicity, we proceed with the monodisperse distribution PN, = 6,,,, since the 
polydisperse case is readily reintroduced in the final equations below. For each site i 
and symmetry index a = 0, I , .  . . , N - 1 we introduce a pair of 2n-component complex 
random fields 4:, and +i, along with the identity 

where the matrix V,j is found to be given by (Smith 1983) 

V, =C exp[ik. ( r ,  - r j ) ] [ N t K f ( k ) ] - '  (2.12) 
k 

where the sum is over all wave vectors k in the first Brillouin zone, r, designates the 
position vector to lattice site i, N( is the number of sites in the lattice, f ( k )  is the 
nearest-neighbour lattice structure factor 

(2.13) 

and the { a , }  are the set of z lattice vectors to nearest-neighbour sites. It is only in 
(2.11) that we utilise the n + O  limit realisation of the probability distribution (2.6). 
Other realisations of this spin averaging imply corresponding different properties of 
the 4:a and c $ , ~ .  
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Now introduce (2.1 1 )  into (2.9) for each a, leading to the representation in 
exponential form of 

z = T r S [  J W W +  exp( x' a = O  I [s~,,+i +la + sta * 4 t a ~  

where 84'84 is defined by 

(2.14) 

(2.15) 

Note that the sum over a in (2.14) only runs up to N - I .  
The spin dependent portion of (2.14) is readily evaluated using (2.6) to give 

Trs exp( - 4,a + S,, +E ( H t  - S, ,  + H .  S:,,)) = n ( I  + X , )  (2.16) 
I a=O I I 

(2.17) 

The expansion of the product in (2.16) gives terms containing M-factors of the X ' s ,  
associated with the sites occupied by the polymers, along with Nt - M factors of unity 
from the sites with solvent molecule occupancy. Expanding out the X ,  using (2.17) 
implies that when the initial segment a = O  is at i, then X ,  contributes a factor of 
H .  + y o ,  while it gives for intermediate a = I , .  . . , N - 1, with Ht 41N-l for 
the last (Y = N segment. 

Introduction of (2.16) into (2.14) provides the full field theory for self-avoiding 
chains with polymerisation index N +  1 as 

(2.18) 

The appropriate generalisation to a distribution PN of chain lengths involves letting 
the upper summation index of a be unbounded and replacing X i  in (2.18) by 

The field theory (2.18) provides the obvious definition of the 'order parameter' (Edwards 
and Freed 1970a, de Gennes 1979). 

The introduction of polymer-solvent or polymer-polymer interactions within the 
lattice spin formalism of Q 2.1 appears to be impossible because a pair of spins STm 
and Si, must appear in order that a site i be occupied by a monomer. Interactions of 
this monomer at i with other monomers or with solvent molecules would appear to 
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require introduction of additional factors of S:, and SI, for each such interaction. 
(There are a total of z - 2 possible if only nearest-neighbour interactions are considered.) 
However, the spin averaging procedure, which makes the chains self-avoiding, pre- 
cludes the possibility of non-vanishing terms with these additional factors of spins for 
lattice sites occupied by polymers. It is, however, possible to introduce these interac- 
tions with the field theory representation (2.18) because of the physical interpretation 
of the factor II,( 1 + X , )  in (2.16). Before introducing these interactions in 9 4, we turn 
to a mean field evaluation of (2.16) to verify that it produces the well known Flory- 
Huggins result (Flory 1953) and, hence, that this field theory provides the basis for 
systematically investigating corrections to Flory-Huggins theory for concentrated poly- 
mer solutions, melts, blends, etc. In addition, we transform an approximate version 
of (2.16) into a lattice version of the Edwards field theory (Edwards 1966, 1975) for 
semidilute polymer solutions. 

3. Reduction to Flory-Huggins mean field and Edwards field theory 

3.1. Mean j e l d  solution 

The simple Flory-Huggins theory applies to a monodisperse solution of polymers in 
solution, so we extract out of (2.18) this contribution according to (2.10). The lattice 
spin model does not include polymer-solvent interactions, but a mean field description 
of these added interactions is identical to that of the Flory-Huggins theory, so we 
concentrate there on the derivation of the entropic part of the Flory-Huggins theory 
from a mean field treatment of (2.18) with (2.10). The conversion to a lattice form of 
the Edwards field theory in 92.2 below and the introduction of interactions in 9 4  
demonstrate that interaction energies are properly incorporated, while the generalisa- 
tion of the entropic portion to polydisperse distributions and polymer mixtures follows 
analogously. 

In mean field approximation the 4(, must become identical, independent of site i 
and internal index a. When represented in terms of Fourier transforms on the lattice 
through the transformations 

= 1 exp(ik r,) 4 k a  

+in =Cexp(- ik .  r , )+L,  

the mean field +ou is just the k = 0 Fourier component. (It is also the K = 0 component 
with respect to transforms with respect to a.) Each chain begins with a factor H .  +:o 
and ends with a H i  * so if H and Ht are taken along the 1-direction in n-space, 
the mean field 4 and 4’ likewise lies along this direction. Hence, vector symbols on 
4 are dropped as is the k = 0 spatial Fourier component index. The Flory-Huggins 
theory considers n p  polymer chains with polymerisation index N + 1, so we likewise 
treat this case. 

for each a 
before setting them equal to common values +t and 4, respectively. Then the mean 
field approximation to (2.16) is written as 

It is useful to begin by taking a set of different mean fields 4; and 

mean 

field 
n ( 1 + XI) - ( 1 + X ) ” .  (3.1) 
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where Ne is the total number of lattice sites. Below in (3.3) a subscript s is placed on 
unity on the left side of (3.1) to aid in counting. Our mean field representation of X of 
(2.17) becomes 

(3.2) 

Insertion of (3.2) into (3.1) and use of the multinomial theorem resutls in the expression 

where the summation requires Z a  ma S N,. However, chain connectivity implies that 
if we begin mo polymer chains with mo factors of 4: from the CY = 0 beginning monomers, 
there must likewise be mo monomers with CY = 1 , .  . . , N. Hence, chain connectivity 
requires that 

mo= m ,  = m 2 = .  . . = ", (3.4) 

reducing (3.1) to the single sum 

It is convenient to replace N +  1 by N to compare with Flory-Huggins theory. Use 
of the definition (2.10) along with (3.5) and setting 4L4a to be independent of CY gives 
the mean field approximation as 

N t ! j j d 4 t  dq5(4tC$)"P"-')exp[-Np(N- l)q5'C$/Kz] 
" = [ ( N e  - N n , ) ! ] (  n,!)  11 dq5 dq5 exp[ -Ne( N - 1 ) 4  ' 4 /  K z ]  (3.6) 

Since 4 and 6' are k = 0 fields, there is but a single integration over 4 and 4'. The 
exponential factor arises from the mean field approximation to the exponential in 
(2.18) as follows. The use of (2.12) and retention of only the k = 0 portion yields the 
factor of z, and the sums over sites and a yield the overall Ne( N - 1) factor. 

Changing variables to the real and imaginary parts 

f#+ = 2-"*( 4 + q5+),  q5i = 2-"*(4 - id t ) / i  (3.7a, b )  

implies j j  d4 t  d 4  + JFm d 4 r  lTm d &  and the integrals in (3.6) are readily evaluated to 
give 

The mean field entropy S2F is defined by 

SMF *P = kB ln Zy (3.9) 

with kB Boltzmann's constant. Hence, use of Stirling's approximation for the factors 
( r ~ , ! ) ~  and [ ( n , ( N -  l))!] only and setting K = 1 as discussed in § 2, converts (3.8) 
and (3.9) into 

k, 'SKF= In[(Nt)!]-ln[(nP)!]-ln[(~,- ~ n , ) ! ] +  n , ( ~ -  1) In(z/N,). (3.10) 
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To calculate the entropy of mixing from (3.10) it is necessary to subtract the entropy 
of the polymer melt obtained from (3.10) by setting Nt + Nn, to give 

(3.10a) 

The difference between (3.10) and (3.10a) provides the entropy of mixing ASEF. Upon 
use of Stirling's approximation and the definition of the polymer volume fraction 
$ = n,N/ N,, this entropy of mixing is converted to the form 

ASKF/kBNf = - ( $ / N )  In $ - ( 1  - $) In( 1 -$) (3.10b) 

which is just the standard Flory-Huggins entropy expression. Note the important role 
played in the passage from (3.5) to (3.6) of the sequential monomer index LY and the 
monodispersity which are inaccessible to the standard spin model. The Flory-Huggins 
total entropy corresponds to (3.10) with Stirling's approximation and with the replace- 
ment of z by z - 1 to eliminate immediate self reversals which the field theoretic mean 
field approximation retains. Hence, the deviations of the from common 
values for all i and LY provide the entropic corrections to Flory-Huggins theory due 
to correlations within and between chains. (Note that the customary use of saddle 
point approximations to (3.6) for defining the mean field would just generate the 
leading Stirling's approximation. In addition, it is possible to pursue the calculation 
with a different mean field 4a for each a. This procedure is more lengthy but 
automatically enforces the constraint (3.4) upon integration over C # J ~  and 4;.  The 
2N-dimensional d 4 a  d4: integrals yield (3.10b) also. The above single (4, 4t) mean 
field approach is presented because of its greater simplicity.) 

and 

3.2. Conversion to Edwards j e l d  theory 

In the dilute and semidilute regions the polymer volume fraction $,, = n,N/ N f  is very 
small, and passage to a continuum limit in the field theory (2.18) is permissible. Hence, 
this limit should yield the same theory as in the continuum model apart from irrelevant 
contributions. We now verify that the leading C$4 contribution to (2.18) is equivalent 
to a lattice version of the Edwards continuum field theory for the polymer excluded 
volume in dilute through semidilute solutions. The only difference appears because 
(2.18) is only applicable in the self-avoiding walk (good solvent) limit, so the quartic 
coupling constant is a pure number and not a variable as in the continuum theory. 
However, when the nearest-neighbour attractive interactions are appended in 0 4, the 
44 coupling constant then becomes a variable parameter. 

We begin by applying (2.10) to the field theory (2.18) to extract Z+. The a/a( H * Ht) 
operation acts only on the n, ( 1  + X I )  portion of (2.18), so we work first on this factor 
to get 

where the beginning lattice sites ib and the chain ending ones i, are all distinct from 
each other, and sums run over all possible ib and i, on the whole iattice. The quantity 
X i  is just the remaining portion of X ,  of (2.17) from the interior monomers, 

a=l  
(3.12) 
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As noted above, both H and Hi are taken to lie along the I-direction in n-space, so 
the 4:L.r and are likewise the components in this direction. 

Exponentiating the product in X: and expanding through quadratic in the Xi yields 

JJ ( i + x i ) = e x p (  I C  ( c lh.le) ~ X ~ - ~ ( X ; ) Z + ~ ( X ; ~ ) ] ) .  (3.13) 

In the continuum limit the restriction i F! ( i b , i e )  can be ignored, so we drop it below. 
Alternatively, we can exponentiate and expand the full X, without first extracting the 
chain end terms. That would yield contributions from H and Ht in -$Xf of the form 
H .  c$:o Z r l ;  + y o  * +tu-l and (Ha +:a)2,  etc (Smith 1983). The Edwards field theory 
would then follow by neglect of the higher than linear terms H .  +:o and Hi 

I E ( b,Ie) 

Now introduce the one-component field 4, and use the identity 

(3.14) 

to give the approximation 

(3.15) 

where the summation constraints in (2.12) and (3.13) are ignored. 

Green's function 
The +field integration is a Gaussian one, producing np factors of the lattice 

The normalisation factor in 4' - + from (3.15) vanishes in 
been omitted in (3.16). 

(3.16) 

the n + 0 limit, so it has 

f ( k )  of (2.13) behaves as In the long wavelength limit for centrosymmetric lattices 
z-iZ.,,  ( k .  a , ) ' + O ( k 4 ) ,  so to order k 2  (2.12) contains 

[ f ( k ) ] - '  = 2-I 1 +(2z)-I X ( k  a,).) (3.17) 

which in isotropic lattices may be written in the form z- '  + (;)'k',,k' with CeR an effective 
step length. The term in 4Ja +,,a-l can be rewritten as 

( I 

+;a * 4 J . a  - I = +;a * 4 ,a  - (Cbja * 4 J a  - * +J,n - i ) (3.18) 
which in the continuum limit becomes 

+Jo * 4 j a - i  + +Ja * +la -+;a * (3.19) 
The (X;)' term with (3.19) would contain 4;a * &+Jn - (a/aa)+Ja, etc, but these are 
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dropped here as becoming irrelevant in the dilute and semidilute solution limits. 
Further use of (3.17) and (3.19) and passage to the continuum limit converts (3.16) to 

G(&,, i,, N ;  9) = [ 64 s4+4(')+(ib, N)4(')(ie,  0) 

corresponding to the chain space form given previously by Edwards and Freed 
(1970a, b, c, Freed 1972) and used in the Edwards field theory (Edwards 1966, 1975, 
Ohta and Oono 1982, Freed 1983). 

The summation over ib and i,, reflecting all possible positions for the chain ends, 
just becomes an integration of (3.20) over the chain ends which we designate as 
Q ( N ,  +). Reintroducing the chain length distribution enables (3.15) to be written 
generally as 

( 3 . 2 1 ~ )  

where the ( j N  designates an average with the chain length distribution PN. The lattice 
form (3.15) is like (3.21) with sums over lattice sites, with the full lattice G of (3.16) 
and constraints that chain end points not coincide with each other or with lattice sites 
occupied by interior chain monomers. At low polymer volume fractions $, this latter 
constraint may be neglected, but it must be retained at higher GP, perhaps along with 
the higher body interactions. The Flory-Huggins results are obtained using the full 
field theory, nor the truncated one with only two- and three-body interactions. (In 
passing from Xi -f 5 d r  factors of lattice vector magnitudes have been omitted for 
notational simplicity.) 

This section demonstrates that previous theories are obtained as particular limits 
of the lattice spin model of 9 3. First of all, a mean field approximation reproduces 
the entropic portion of standard Flory-Huggins lattice theory for a polymer solution. 
At low polymer volume fractions the continuum limit yields the Edwards field theory 
for a set of np self-avoiding polymers with the chain length distribution PN, a field 
theory that has been shown to work well through the semidilute region. It still remains 
to incorporate interaction energies into the model, and this is the generalisation to 
which we now turn. 

4. Interactions 

If  the nearest-neighbour polymer-solvent interaction is taken to be the zero of energy, 
then it suffices to include the nearest-neighbour polymer-polymer interactions. Interac- 
tions between polymers on next-nearest lattice sites can be included similarly, but these 
are not considered for algebraic simplicity. We employ the same model as in lattice 
Monte Carlo calculations, namely one involving an attractive energy - E  between 
non-bonded monomers on neighbouring lattice sites. These interacting monomers may 
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belong to the same or different polymers. It is convenient to let --E apply for all 
neighbouring sites, so an  extra energy of -n,N-E between sequentially bonded neigh- 
bouring sites must be removed, and this is understood to be done below at the end of 
the calculation. 

4.1.  Polymer-polymer interactions 

Section 2 already notes the difficulty in describing polymer-polymer interactions by 
the addition of extra spin-dependent terms in the exponent of (2.9), so we consider 
their incorporation directly into the field theory (2.18). A contribution to Z., from 
(2.18) has a product of Z;e, N A  factors of the Xi, one factor for each lattice sites 
occupied by a monomer. The nearest-neighbour interaction energy can simply be 
introduced by determining the number M of distinct pairs of nearest-neighbour sites 
occupied by polymers. Such a term is multiplied by exp( M & / k g T ) .  

It is convenient to define an averaging process ( ) I  acting on the lattice site indices 
of Xi to introduce this interaction energy. We have the obvious leading terms 

X,XJ, i and j not neighbours 
X,X, exp( -E/ k ,  T ) ,  i and j neighbours. 

( 4 . 1 ~ )  

Let (U) imply i and j are nearest-neighbour lattice sites, so the next member of (4.1) is 

XfXJxk, non-neighbours 

x,x,xk exp( E /  k ,  T )  for (0) or ( i k )  or (jk) 
x,x,xk exp( 2&/ k ,  T )  for (U)( j k )  or (U)( i k )  or ( ik) (  j k )  

(4 . ld )  I xlx,xk eXp(3&/ ke T )  for ( U ) ( j k ) (  ik )  = (Uk) .  

(x fx ,xk )  = 

(The last possibility in ( 4 . l d )  can arise on triangular lattices.) This situation can be 
depicted graphically as in the Mayer expansion for non-ideal gases. 

Condition (4.1) enables us to write 

where the subscript c designates a cumulant average (Kubo 1962). The leading terms 
from (4.2) are then found to be 

In( 1 + x,) ++ C [In( 1 + x,) In( 1 + x , ) ] [ e x p ( ~ / k ~ ~ )  - 11 
(11) 

) - 3  exp(2-E/kgT)+2]+. . . (4.3a) 
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which upon expansion to X 3 ,  i.e., to 46, gives 

exp (x i  - f x f + f x : + .  . .)+$C (x,x, - + x ~ x ,  - ixix?+. . .) 
( i  ( 1 , )  

Nearest-neighbour lattice sites are taken to coalesce in the continuum limit, so 
X,XJ is replaced by z Z, Xf. Hence, equation (4.3) reduces in this limit to 

where z' is the number of sites k which are nearest neighbours to a pair of neighbours 
i a n d j  (i.e., in (ijk)). Since X ,  contains for a ZO or N, the terms in (4.4) 
correspond to a chain (i.e., a )  space version of the 44-46 field theory utilised to 
describe polymers near the theta point T = 0 (Kholodenko and Freed 1983~)  which 
occurs near the compensation point T, where the effective quartic constant [ 1 + z - 
z exp( E /  kBT)]/2 vanishes. This condition yields E /  kBT, = In( 1 + z-I). 

A related but somewhat different quantity is obtained from Monte Carlo data where 
the parameter E/kB6 is defined such that the mean square end-to-end distance is 
Gaussian. McCrackin et a1 (1973) find E /  kgO of 0.25 on the simple cubic lattice ( z  = 6) 
and 0.12 on a face centred cubic lattice ( z  = 12). For these cases &/kBTc is 0.15 and 
0.08, respectively. Kremer et a1 (1981) obtain &/kBO of 0.44 on a diamond lattice 
(z  = 4), while E /  kBT, for this case is 0.22. Although T, and 0 are physically different, 
the magnitudes are similar, and they parallel each other in their variation with z. 
Choosing our value for &/kBTc leaves the remaining 46 term form X y  with an overall 
coefficient of - 5 / 6  as the dominant correction term. Hence, a continuum limit of the 
lattice theory with nearest-neighbour polymer-polymer attractive interactions likewise 
produces the 44-46 type field theory in chain space that has been previously postulated 
as a model for polymers in the theta region (de Gennes 1979, Kholodenko and Freed 
1984a). The approach, in principle, also yields the means for estimating the relative 
magnitude of successive higher terms for T < T, where the polymer collapses and the 
higher body terms may enter. Hence, the approach in this section provides a reasonable 
beginning field theory for the consideration of finer details of the coil-globule transition 
(Kholodenko and Freed 1984b). 

- 

4.2. Interactions between diferent polymers 

Blends, solutions of two different types of polymers and copolymers contain different 
types of polymers with different interaction eneegies. Let these polymers be labelled 
as type A and type B. The lattice spin model of self-avoiding chains of 0 2 is readily 
generalised to these cases by addition of the indices A and B to the spins to give the 
variables Sk, ST,", S t ,  S z ,  etc. As different types of monomers cannot occupy the 
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same lattice site, we have exclusion conditions 

885 

(4.5) 

while retaining (2.6) if both spins have A labels or B labels, etc. 
The grand partition function for polymer mixtures becomes 

a2 

Z=Tr,exp[  A =A,B ( K A  ( U )  o = o  $,a . S ~ u + C ( H * . S ; : + H ” . S : , P * , ) ) ] .  0 (4.6) 

The transformation (2.15) is applied for each A by the introduction of 4:; and 4; 
for polymer of type A and 4;: and +fb, etc, if more components are present. The 
spin integrations analogous to (2.16) follow readily to produce the factor 

with obvious notation and physical interpretation. The interaction average ( ), now 
must be generalised to include different energies eAA, eAB and eAB, and the details 
follow directly as in § 2.1, so they are omitted for brevity. The treatment of block 
copolymers follows similarly by use of the term K A ,  Eo, ST:,,, . SFNA to link the blocks 
together. 

5. Branched polymers, loops and generalisations 

The introduction of branching into the lattice model of self-avoiding walks follows 
straightforwardly because of the use of an internal symmetry variable a and the complex 
spin to produce sequential (directional in (Y space) bonds. The classic treatment of 
Lubensky and Isaacson (1979) alters the standard n + 0 requirement to treat branched 
polymers and introduces in a rather abstract fashion a set of branching operators. 
These procedures are both unnecessary here, and, in addition, we can control the 
length distributions. 

It clearly follows that a trifunctional branch is formed with the term 

or 
X 

added into the exponential on (2.9). Here Kb represents a controllable branching 
‘probability’, and Qo is a probability of branch occurrence after a chain has grown to 
a bonds. This latter possibility is added for specially constructed branched systems 
in which the lengths of chain segments between branches can be controlled. The 
alternative forms in (5.1) differ in their labelling of a along the newly created branch, 
and the latter choice would be taken if the average chain length between branches 
were of interest. Chains are begun again with factors of Z t  Ha STo and all chains and 
branches end with factors I C, PoHt * Slo. Thus, a typical contribution to 2 with 
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np originating chains and M branches has a coefficient of H n ~ K ? ( H ' ) " p t M  and is 
therefore generated by 

Distribution in np and M can also be generated by specifying H ,  K b  and H' .  
The model is readily generalised to include tetrafunctional and higher degrees of 

branching, For instance, the tetrafunctional branching vertices are produced by terms 
in S' - SS' .  S with appropriate indices and summations by analogy with the network 
theory of Edwards and Freed (1970a, b, c) and Freed (1971). These higher functionality 
spin models have completely controllable chain lengths and branch length distributions 
as well as branching and chain termination probabilities. The standard n + 0 limit of 
n-component field theory, on the other hand, cannot control these length distributions. 
The close similarity between the two descriptions, however, enables the derivation of 
the corresponding field theory to be obtained quite straightforwardly as the average 
of the exponential of (5.1) plus any higher functionality terms with the weight factor 
given by (2.16). Then the average of the branching operators can be handled following 
Lubensky and Isaacson (1979) by the use of cumulants. The trifunctional terms on 
the left side of (5.1) lead to cubic terms like 

(5.3) 

to be added into the exponent in the numerator of the field theory (2.18) as well as 
96, 99, etc. higher-order terms from higher cumulants. This field theory with the 
leading cumulant reduces to the form of that of Lubensky and Isaacson by following 
the procedure of $ 3.2 to convert to the continuum limit, by introducing Laplace 
transforms with respect to the a index and by then dropping the dependence of the 
fields on this transform index. The introduction of polymer-polymer interactions 
becomes somewhat more complicated for the branch points. No details are presented 
here as we plan to consider branched polymer systems more fully in a future paper. 

It is also possible to introduce closed loops into the polymer system. Suppose 
trifunctional generating terms of the form (5.1) are included. Then the term 

(5.4) 

takes two chain segments at a and p and joins them into a single chain with monomer 
unit index a + 1. If  a and p lie on separate linear chains, then (5.4) just produces the 
trifunctional branch (5.1) in reverse (in order of increasing values of a ) .  However, 
when the strands ending in a and p are themselves produced through branching by 
(5.1),  then (5.4) can lead to closed loops. 

Other lattice polymer problems can be developed by further generalising the spin 
statistics to spin averages which differ from the form in (2.6). For instance, it is possible 
to introduce spin variables to describe self-avoiding polymers which have different 
weights for trans and gauche bonds. Such a model is of interest in the study of the 
glass transition (Flory 1956) and of micelle structure. The spin model produces a very 
complicated field theory which is left for a future work for further study. 
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